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Abstract—The data produced by sensors are expected to grow 
exponentially in the next several years. In particular, e-science 
applications need to move big data for remote analysis or data 
distribution, which is required to efficiently utilize distributed 
resources such as supercomputers, data centers, scientific 
instruments and the network that connects these facilities. In this 
article, we evaluate prior work on data transfer over wide-area 
networks focusing on parallel and cross-layer optimization 
methods. The cross-layer optimization methods reduce the 
overhead incurred by many layers or improve the performance 
of data transfer by appropriately using the information of layers 
in a holistic way. The goal of this study is to help researchers 
focus more on unexplored areas, e.g., multipath-aware network 
protocols, to better handle big data.   
 

I. INTRODUCTION 
In the era of big data, both compute-intensive computing, 
which is usually called extreme-scale computing, and 
data-intensive computing are crucial in high-performance 
computing communities. Extreme-scale computing seeks for 
novel solutions scalable up to millions of cores, which will be 
realized in near future.  Likewise, data-intensive computing is 
becoming more important as the data growth rates in most 
areas of sciences as well as general information technology 
areas are projected to dramatically increase up to petabytes per 
application. Consequently, data movement in data-intensive 
computing is one of the key factors influencing overall 
performance of such data-intensive workflows.  

Data movements happen in micro and macro level among 
compute, network, and data storage elements. In micro-level 
data movements, circuit level studies such as network on chip 
are exemplary. In macro-level data movements, data 
movements among independent compute/storage boxes are 
typical research issues. In this article, we focus on data 
movement mechanisms and techniques from the perspectives 
of distributed workflow execution. The distributed workflow 
are becoming prevailing in scientific computing where 
experimental facilities such as DOE light source facilities, 
observational instruments such as telescopes, and computing 
facilities, e.g., supercomputers, are usually geographically 
distributed, which makes data movements over wide-area 
networks (WAN) inevitable.  

There has been a huge amount of work to improve data 
movement rates with the emergence of new network 
technologies, new storage technologies, and so on. In 
particular, the exploitation of parallelism inherent in systems 
involved in the end-to-end data movement path has been 
successful in scaling data movement throughput. One simple 
example is striping data among multiple physical disks as in 

redundant array of independent disks (RAID). We first present 
what system components are involved in the end-to-end data 
movement in distributed data-intensive workflow based on a 
layered model. We then give an overview of prior work in the 
context of parallel computing so that readers can see which 
layers are fully utilizing parallelism and which layers still have 
room for further improvement. 

In addition to advances through parallel computing in each 
layer, cross-layer optimization has been another approach 
taken to either reduce unnecessary overhead through 
bypassing layers or apply other layers’ information to efficient 
decision making. One simple example is combining disk 
throughput information and network bandwidth information to 
determine the number of TCP streams required to maximize 
the data movement throughput.  

The remainder of the article is organized as follows. In 
Section II, we describe preliminaries on data movements in 
the context of distributed data-intensive workflow. In Section 
III, we present a layered model, and categorize and elaborate 
prior work regarding parallel computing for big data transfer 
based on the model. In Section IV, we give an overview on 
cross-layer optimization approaches for efficient data 
movement. In Section V, we briefly summarize the article. 

II. OVERHAUL OF DATA TRANSFER 
The end-to-end data transfer spans from disks via network to 
disks, and goes through many other hardware or software 
components related to the data transfer. Figure 1 captures the 
major system components participating in data transfers often 
happening in distributed workflow. A data transfer is initiated 
by a user or a workflow management module. The data 
transfer request is eventually carried out by hosts. In case of 
large computing facilities such as Argonne Leadership 
Computing Facility (ALCF), dedicated computers, called data 
transfer nodes (DTNs), are used to switch between network 
and disks. 

The host sending data reads data from disks and sends them 
to another host over networks. The host receiving data does 
the same series of work in reverse order. For a storage 
operation such as a read or write, the request is processed by 
several layers of system software such as file system, logical 
device drivers, and hardware device drivers. Current storage 
systems are massively parallel rather than a single disk and 
may be front-ended by a complex parallel file system (PFS) 
stack in case of large high performance computing facilities. 
Typically, the PFS is shared by compute nodes and data 
transfer nodes. A single application I/O request may be split 
into several “physical” I/O requests, and these requests must 
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pass through the interconnection switch that connects the host 
bus adapter on the computer system and the disk array 
controller. The disk array controller takes the I/O request and 
creates one or more I/O requests to the individual disks in the 
array. The data is then transferred between the disk drive and 
the application memory space with multiple buffering along 
the way. 

The sender may want to apply data preprocessing filters to 
data streams before it send them out to networks. The typical 
data preprocessing filters are compression and encryption, 
which are independent of internal data processing of 
applications. The multiple cores in the host, which are 
indicated by capital C in the Figure 1, are used to execute data 
preprocessing filters in parallel. Multiple network interface 

cards (NICs) can be engaged to achieve higher throughput 
beyond the capacity of each NIC. The network paths that 
transfer data between two sites are contingent on network 
properties. For example, if network connecting the sites is a 
dynamic circuit network supporting deterministic network 
paths with bandwidth guarantee, static network paths with 
fixed bandwidth can be set up for data transfers between two 

hosts. The workflow management module may engage 
multiple hosts for data transfers between two sites if 
necessary. We describe detailed previous research work in 
each layer in the following section. 

 

III. PARALLELISM EXPLOITATION 
In general, parallel computing can be classified into three 

categories: data parallelism, task parallelism, and pipeline 
parallelism. We use this criterion to classify previous studies 
and map those representative studies in Table 1. The layers in 
Table 1 are extracted from system layers in Figure 1. Four 
layers are defined; distributed workflow, network, application, 
and storage layers. The distributed workflow layer deals with 
data transfer among applications over networks, which are 
typically LAN or WAN. The network layer deals with 
network routing and protocols for data transfers. The network 
layer is further divided into two sub-layers, middleware and 
network protocol. The application layer deals with 
orchestrating data streams in the application level. The 
application layer is also further divided into two sub-layers, 
data stream transporting and data stream processing layers. 
The storage layer deals with disk request handling from 
applications down to physical disks. The storage layer also has 
two sub-layers, file system and storage system layers. 

A. Data Parallelism 
Data parallelism refers to multiples instances of a single 

task running on different datasets. Accordingly, distributing 
datasets to multiple computing nodes is a main issue in data 
parallelism. 

In the storage layer, parallel file system (PFS) and 
high-performance storage system (HPSS) are prominent in 
terms of parallelism. IBM’s General Parallel File System 
(GPFS) [9], Luster, and PVFS are most adopted PFSs. Such 
parallel file systems have multiple file servers and metadata 
servers, both of which provide file system I/O services to file 
system clients. Exceptionally, PVFS has a single metadata 
server called MGR, which is featured by one-time MGR 
access by file system clients to avoid MGR bottleneck. The 
number of file system clients can amount up to millions, and 
the file servers and MDSs are running in parallel to achieve 

TABLE I 
PARALLELISM IN BIG DATA TRANSFERS 

Layer\Parallelism Data Parallelism Task Parallelism Pipeline Parallelism 

Distributed Workflow Data flow based parallel workflow 
scheduling [1,2] 

Control flow based workflow 
scheduling [1] 

Overlapping execution with data 
staging [2] 

Network 
Middleware Multipath (OSCARS) [3]   

Network 
Protocol MPTCP [4]  GridFTP-pipeline [5] 

Application 

Data Stream 
Transporting GridFTP-parallel data streams [5] GridFTP-cluster-to-cluster(striped) 

server [6]  

Data Stream 
Processing Parallel Compression [7] Parallel Data Stream Processing 

[1,8]  

Storage 
File System PFS-parallel data access [9] PFS-parallel file service [9] IOFL-pipeline data transfer [10] 

Storage System HPSS-striped data storage [11] HPSS-concurrent servers [11]  
 

 
Fig. 1.  System overhaul regarding data transfer 
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extreme scalability and throughput in HPC systems. HPSS 
[11] is storage software developed by IBM in conjunction with 
DOE national labs over a decade. In particular, the GPFS 
architecture is built on shared disks and provides parallel data 
access for multiple file system nodes through data parallelism. 
Similarly HPSS achieves high aggregate disk throughput by 
appropriately using data parallelism such as striped data 
storage.  

In the application layer, GridFTP uses parallel data streams 
to transport portions of a large file in parallel [5]. The data 
processing ahead of transporting such as compression [7] and 
encryption can also be performed in parallel. Bicer et al. [7] 
proposes an online parallel compression/decompression 
framework for data-intensive applications, which is shown to 
benefit data-intensive applications by amortizing I/O time. 
Data compression utilizing CPU resources helps reduce 
network bandwidth consumption and improve the overall data 
transfer throughput especially in case of network bottleneck.  

In the network layer, many studies including congestion 
control and stability [4] have been done for multi-path TCP 
(MPTCP) to achieve higher data transfer throughput beyond a 
single path TCP. MPTCP is now concrete proposal for IETF. 
However, MPTCP by itself cannot know or guarantee the use 
of multiple independent network paths between the source and 
the destination. MPTCP just tries to use multiple network 
interfaces in a multi-homed host while establishing the TCP 
connections. Dynamic circuit network services such as 
OSCARS [3] support multiple network paths in network 
infrastructure level. In OSCARS, a centralized manager sends 
controls messages switches/routers to set up deterministic 
network paths over wide-area networks. The virtual circuits in 
OSCARS are managed in layer 3 network level using 
multi-protocol label switching (MPLS) and resource 
reservation protocol (RSVP). The separation of control plane 
and data plane in OSCARS is similar to the design principle of 
the emerging software-defined networking (SDN) technology. 

In the distributed workflow layer, massively parallel 
workflow scheduling for a large number of datasets 
corresponds to data parallelism. Several workflow 
management systems supporting data flow control including 
Swift [2], Wings for Pegasus [1], and Askalon [1] can 
distribute datasets to multiple distributed computation sites for 
the same data processing task. 

B. Task Parallelism 
Task parallelism refers to multiple tasks concurrently 

executing on different cores. Accordingly, distributing tasks to 
multiple computing nodes is a main issue in data parallelism.  

The distributed lock manager in PFS such as GPFS [9] and 
Lustre overcomes the bottleneck of a centralized lock manager 
so that it can scales up to a large number of nodes, which 
exploits task parallelism. Likewise, the HPSS architecture has 
multiple concurrent servers with diverse functions such as 
metadata management and migration, which utilizes task 
parallelism.  

In the application layer, GridFTP cluster-to-cluster 
architecture [6] provides striped or interleaved data transfer 

across multiple nodes in clusters. Although the architecture is 
more close to data parallelism from a perspective of one file 
transfer, it can be regarded as an architecture using task 
parallelism in a sense that multiple data transfer requests can 
be handled in different sets of nodes in clusters. Regarding 
data stream processing, general parallel data streaming 
platforms such as IBM InfoSphere [8] inherently exploit task 
parallelism by mapping data stream task graphs onto 
multicores in a server farm. Even though current 
implementation such as Globus XIO [14] assumes a serial data 
processing task session, e.g., encryption followed by 
compression, more complex data processing tasks, e.g., 
parallel execution of compression and checksum computation 
followed by a merge of each result, can benefit from task 
parallelism as in IBM InfoSphere.  

In the distributed workflow layer, usual workflow 
schedulers [1] utilize task parallelism inherent in task graphs, 
which formally specify workflows, by running tasks without 
precedent constraints concurrently on different compute 
resources.  

C. Pipeline Parallelism 
Pipeline parallelism refers to a succession of tasks, each of 

which runs independently, that a stream of data passes 
through. Accordingly, distributing pipeline tasks to multiple 
computing nodes and determining appropriate data exchange 
size among pipeline tasks are main issues in pipeline 
parallelism. 

Ohta et al. [10] propose pipeline transfer optimization for 
the I/O forwarding layer, which is used to eliminate I/O 
bottleneck from computing nodes to storage systems by 
reducing the number of I/O requests. The basic idea of 
pipeline transfer optimization is overlapping application I/O 
requests and file system I/O requests in which I/O requests 
pass through client I/O, IOFL, and PFS layers. 

In the network layer, GridFTP enhances standard FTP 
through data channel reuse and pipelining control message 
exchange and file transfer. The standard FTP can send only 
one file once data channel is established. GridFTP makes data 
channel reusable for multiple file transfers. Regarding file 
transfers, control message exchange precedes a file transfer, 
and standard FTP cannot overlap control message exchange 
with a file transfer. In case of multiple small file transfers, this 
mechanism exacerbates overall file transfer time due to 
increased unnecessary overhead, which is called the lots of 
small files (LOSF) problem. By overlapping control message 
exchange with actual file data transfer, GridFTP can expedite 
multiple small file transfers [5]. 

In the distributed workflow layer, Jung et al. [2] propose 
algorithms and mechanisms to overlapping data transfers and 
computation. In the context of distributed workflow execution, 
multiple jobs may be concurrently executed across multiple 
computation sites. Without loss of generality, a job can be 
simplified as a sequence of three phases; stage-in, execution, 
and stage-out. In the stage-in phase, the input data for the 
computation is moved to the computation site and 
computation on the data follows. The output data of the 
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computation is sent out to the next distributed sites on which 
descendent jobs are scheduled. By overlapping those three 
phases, the execution time of distributed parallel jobs is 
significantly improved [2]. 

D. Discussion 
In most areas, parallel computing techniques have been 

successfully applied, and it led to significant performance 
improvements. However, current data transfers are being 
carried out either by compute nodes, which means data 
transfer is not first priority jobs in those nodes, or by DTNs, 
which are high-end computers dedicated for data movement. 
This may have been enough for current data transfers, but 
high-performance data transfers with increased amount of data 
and stricter quality of service requirements will require 
innovative data transfer mechanisms and infrastructures. For 
example, current Globus XIO framework on which GridFTP is 
built, does not fully exploit parallelism as much as IBM 
InfoSphere does. This may be because current needs for data 
preprocessing are limited to several basic functions such as 
compression and accordingly thin software layer is preferred. 
With increased demand for data preprocessing at the level of 
data transfers and the emergence of cheaper multicore 
systems, DTNs may need more sophisticated parallel 
computing mechanisms. 

IV. CROSS-LAYER OPTIMIZATION 
The purpose of cross-layer optimization is twofold: 1) 

Overhead reduction and 2) Impedance matching. Some layers 
in Figure 1 can be bypassed to reduce overhead introduced by 
deep layers. For overhead reduction in data transfer, thorough 
analysis has to be done to understand the tradeoff between the 
flexibility that a layer brings in versus the overhead. Cautious 
decision can be made to eliminate overhead introduced by 
multiple layers by merging/bypassing one or more layers or 
making a layer as thin as possible. The second purpose is 
impedance matching, which tries to avoid overprovisioning or 
underprovisioning of resources while achieving the maximum 
data transfer throughput. For example, if the maximum disk 
throughput obtained from the storage system is limited by 100 

MB, we do not have to request for a network path with 200 
MB bandwidth. 

A. Reducing Overhead 
In the storage layer, one approach to reduce overhead is by 

merging two sub-layers, i.e., file system and storage system, is 
GPFS Native RAID [9]. GPFS Native RAID embeds a GPFS 
I/O node onto the external RAID controller such that the 
single merged layer brings declustered RAID rebuild 
management function into GPFS, which is much faster than 
the previous two-layer approach, and eliminates the need for a 
storage controller. Even though this study is not directly 
related to data transfers, this study is meaningful in a sense 
that data transfer during disk failure can maintain throughput 
comparable to data transfer during normal operation in RAID 
disks. 

Across the storage, the application, the network layers, the 
remote direct memory access (RDMA) [13] has been proposed 
to reduce overhead incurred from redundant copies at each 
protocol layer and host CPU involvement by direct 
memory-to-memory data movement from one host to another. 
RDMA does not require CPU or caches by enabling network 
adaptors to transfer data from/to application buffers, which 
bypasses file system and network protocol. Kissel et al. [13] 
shows that RDMA over WAN performs significantly better 
than TCP with a fraction of CPU power.   

B. Impedance Matching 
The Globus eXtensible I/O (XIO) [14] system is a unified 

framework integrating disk I/O, data processing, and network 
I/O. The Globus XIO architecture is a software layer model 
where users can put as many layers as they need for their 
purpose. For example, if a user needs to send compressed data 
using UDT protocol, the user can just configure the Globus 
XIO stack with a compression layer and a UDT layer on top of 
it. The Globus XIO itself does not address any cross-layer 
optimization problem, but provides a solid abstract model, 
which any optimization techniques can be developed based on. 
Jung et al. [14] addresses the cross-layer optimization problem 
by allocating variable numbers of threads to different layers in 

TABLE II 
CROSS-LAYER OPTIMIZATION 

Layer Cross-layer Approach 

Distributed Workflow  Multipath 
/Network-centric  
workflow 
scheduling [12] 

    

Network 
Middleware  MPTCP based 

on determined 
paths 

  

End-system 
aware data 

movement [15] 

Network 
Protocol    

RDMA [13], 
Globus XIO [14] Application 

Data Stream 
Transporting     

Data Stream 
Processing    PFS & Data 

Processing 
embedded in 

Storage Systems Storage 
File System PFS embedded 

in Storage 
Systems [9] 

  

Storage 
System    
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order to prevent a certain layer from being a bottleneck while 
improving performance. For example, say that two layers, a 
compression layer and a TCP layer, are involved. The 
compression layer is compute-intensive compared with TCP 
layer and more number of threads needs to be allocated for the 
compression layer. 

Spanning from the network layer to the distributed 
workflow layer, multipath/network-centric workflow 
scheduling [12] is one example of cross-layer optimization 
approaches. Basically, multipath/network-centric workflow 
scheduling takes into account compute resources and network 
resources at the same time. Whereas general workflow 
scheduling first schedule compute resources and later 
determine network paths, multipath/network-centric workflow 
scheduling tries to determine compute resources and network 
paths at the same time, even further exploring multiple 
network paths for data transfer between two sites. In this way, 
the number and bandwidth of network paths are optimized for 
overall workflow execution time (makespan), which means 
data transfer throughput is well matched with computation site 
throughput. 

In a broader sense, there have been few studies to optimize 
throughput/impedance of all system components involved in a 
complete end-to-end data transfer path. Jung et al. [15] models 
all system components using a graph data structure and 
models throughput of a system component as a bandwidth 
capacity function of a link in the graph model. Based on the 
graph model, linear programming based optimization 
techniques have been develop to maximize overall throughput.  

C. Discussion 
As system architecture becomes more deep and 

heterogeneous, the cross-layer optimization problems get more 
complex and even intractable. The overall system architecture 
should be carefully designed according to the design goal. For 
example, latency or jitters are crucial issues for real-time 
visualization applications. In such cases, more layers for 
flexibility are not good options, and reduced layers and 
cross-layer optimization techniques should be instead sought 
after. This article is to give an overview of current cross-layer 
optimization techniques and may help identify unexplored 
research areas. The dark shade squares in Table II show 
examples of some ideas. First, MPTCP may be more tuned for 
performance enhancement if we know how many paths are 
available and the characteristics such as delays are known 
ahead. The other example can be data processing functions as 
well as PFS are also embedded in storage systems. We know 
similar ideas are being proposed such as ‘Smart SSD’, which 
pursue the key concept of putting computation near data to 
reduce data movement bottleneck, One example of Smart SSD 
proposals is query processing on Smart SSDs. However, those 
ideas should be viewed from the perspectives of overall data 
transfer architecture, too. 

V. SUMMARY 
In this article, we give an overview of big data transfer from 

the perspectives of parallelism exploitation and cross-layer  

optimization. We present a system layer model to classify the 
prior work in the literature and identify the unexplored 
research area. Exploiting parallelism has improved big data 
transfer performance drastically and some areas need more 
tuning and integration work to apply the state of the art to 
them. The cross-layer optimization relatively has not been 
extensively researched yet, and remains as an active research 
issue.   
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